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Single Object 

“A vintage biplane gliding low along a serene beach”

Complex Human Motion

“Woody from Toy Story”

“A coffee cup on a café table in a miniature cityscape”

Creative Camera MotionMultiple Object

“Three baby dragons crowded around glowing moonstone bowls”

Figure 1. Mixture of Score Guidance (MSG), a novel approach for zero-shot motion transfer in diffusion models, enables high-fidelity
motion synthesis across diverse scenarios. MSG successfully handles various motion patterns including complex object movements and
camera trajectories. Full video results are available in the supplementary material.

Abstract

In this work, we propose the first motion transfer approach
in diffusion transformer through Mixture of Score Guid-
ance (MSG), a theoretically-grounded framework for mo-
tion transfer in diffusion models. Our key theoretical con-
tribution lies in reformulating conditional score to decom-
pose motion score and content score in diffusion models.
By formulating motion transfer as a mixture of potential

energies, MSG naturally preserves scene composition and
enables creative scene transformations while maintaining
the integrity of transferred motion patterns. This novel
sampling operates directly on pre-trained video diffusion
models without additional training or fine-tuning. Through
extensive experiments, MSG demonstrates successful han-
dling of diverse scenarios including single object, multiple
objects, and cross-object motion transfer as well as com-
plex camera motion transfer. Additionally, we introduce
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MotionBench, the first motion transfer dataset consisting of
200 source videos and 1000 transferred sequences, cover-
ing single/multi-object transfers, and complex camera mo-
tions.

1. Introduction
Diffusion-based video generation models have gained sub-
stantial attention for their ability to produce high-quality,
diverse video content. These models, driven by advances
in text-to-video generation, open new possibilities for auto-
mated and creative video synthesis [1, 5, 8, 26, 28, 33, 33,
36]. Motion transfer in generative models [3, 10, 30, 34,
38, 40], has become a significant research area, focusing
on transferring the motion from one video to another, often
guided by text prompts. Consider the complex transforma-
tion depicted in Fig. 1, where a ground vehicle’s trajectory
is reimagined as the flight path of an aircraft. Such mo-
tion transfer involves more than merely replacing the car
with a plane. For instance, translating the movement of a
car into a plane gliding over a beach, as described by the
text prompt (see Fig. 1) requires a significant adjustment
in environmental context. This includes transforming how
the car interacts with the road to how an aircraft engages
with the sky. This level of control is particularly important
as it enables users to create videos with motions that are
challenging to describe through text prompts alone, such as
complex camera motions (see Fig. 1).

Recent video generation and editing methods have fo-
cused on disentangling motion and appearance charac-
teristics. Various approaches have emerged: MotionDi-
rector [40] uses an appearance-debiased temporal loss
with dual-path LoRA architecture, while DreamVideo [31],
Customize-A-Video [22], and MotionCrafter [38] employ
dedicated processing branches. VMC [10] combines fine-
tuning and inversion techniques targeting temporal lay-
ers, and DMT [34] leverages space-time feature loss us-
ing DDIM inversion and UNet activations. Motion Inver-
sion [30] uses motion embeddings trained from reference
videos for temporal dynamics control. Despite these ad-
vancements, motion control in video generation remains
challenging because of the complex interplay between spa-
tial and temporal dimensions in video. Controlling motion
is essential for applications in entertainment, advertising,
and virtual reality, where specific and consistent movements
are crucial to communicate a narrative or aesthetic vision.

However, while these methods are effective in straight-
forward motion transfer tasks involving single objects with-
out significant background or object transformations, they
struggle with more challenging motion transfer tasks. They
often fail to adequately transform the scene, merely replac-
ing one object with another without aligning the scenery
with the changes specified in the text prompt. Other meth-

Dynamic Camera RepresentationStill Camera Representation

Figure 2. Our intuition. Visualization of motion characteristics
M(z) extracted from early-timestep conditional scores. (Left)
Multiple object motion representation showing the simultaneous
movement of two objects. (Right) Combined object and cam-
era motion representation demonstrating how our method captures
both local object motion and global camera movement patterns.
The visualizations are obtained from the conditional score maps
∇zt log pt(z|y) at early timesteps t ≪ T .

ods may dramatically alter the scene without preserving the
original motion.On the other hand, video editing methods
[2, 4, 11, 20] utilize structural similarities between source
and target videos. However, their performance is limited
when it comes to multi-object motion transfer or manag-
ing complex camera movements. Additionally, these meth-
ods struggle with significant shape transformations, such as
turning a car into a flying plane (see Fig. 1). These limita-
tions highlight the need for more advanced motion transfer
techniques that can handle a wider range of transformations
and motions without being constrained by the physical sim-
ilarities between the source and target videos. Such capabil-
ities would significantly enhance the flexibility and applica-
bility of generative models in video editing and animation,
opening up new possibilities for creative and practical ap-
plications.

In this paper, we present Mixture of Score Guidance
(MSG), a novel approach for motion transfer in diffusion-
based generative video models. Our method builds upon
a novel conditional score reformulation, where we formu-
late motion transfer as a mixture of potential energies in
the score space of diffusion models. By leveraging the ob-
servation that reformulated conditional scores encode rich
motion information in early diffusion timesteps, MSG suc-
cessfully isolates and transfers motion patterns. We es-
tablish the mathematical connection between score mix-
ing and Langevin dynamics, providing theoretical perspec-
tives for stable motion transfer. Through extensive experi-
mentation, we demonstrate that MSG enables high-fidelity
motion transfer across diverse scenarios without requiring
model fine-tuning or additional training data. Our work ex-
tends beyond single-motion cases to handle multiple motion
sources, and complex camera motions offering a unified ap-
proach to video motion transfer. Our contributions are as
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follows:
• We introduce Mixture of Score Guidance (MSG), a the-

oretically grounded framework for motion transfer that
formulates the problem through the lens of statistical me-
chanics. Our method operates directly in score space
without requiring additional training or fine-tuning.

• We demonstrate the relationship between conditional
scores and motion information, showing that score mix-
ing in early diffusion steps provides an effective approach
to motion transfer.

• We show that MSG’s theoretical foundations naturally ex-
tend to complex scenarios including multi-motion synthe-
sis and complex camera motion transfer.

• We introduce MotionBench, a comprehensive motion
transfer benchmark comprising 200 diverse source videos
and 1000 transferred sequences. This benchmark spans
single/multi-object transfers,and camera motion varia-
tions enabling systematic evaluation of motion transfer
methods across a broad range of scenarios.

2. Related Work
2.1. Text-to-Video Generation

Transformer architectures have emerged as a powerful foun-
dation for video generation tasks. Early research scal-
ing transformers for T2V applications, including Sora [17],
CogVideo [8], CogVideoX [33] and LATTE [16], estab-
lished the viability of this approach. The introduction of
Diffusion Transformers [19] further cemented transform-
ers as core components in video diffusion models. Sev-
eral works have introduced specialized conditioning inputs:
ControlVideo [39] leverages depth maps, DragNUWA [35]
employs motion trajectories, while VideoDirectorGPT [14]
and related approaches [3, 13] utilize spatial and tempo-
ral guides. T2I-based extensions include AnimateDiff [5],
ModelScope [28], and InstructVideo [37].

2.2. Video Motion Editing and Transfer

Video motion control research has developed along two
primary paths: explicit control through bounding boxes
and motion transfer from reference videos. Explicit con-
trol methods include AnimateAnyone [12], Boximator [29],
Peekaboo [9], and Trailblazer [15].

Another significant line of work focuses on transfer-
ring motion from reference videos. MotionDirector (MD)
[40] made a significant advancement with its innovative
dual-path LoRA architecture, effectively separating motion
and appearance characteristics through specialized compo-
nents that enable precise control over temporal dynamics.
DreamVideo [31] and Customize-A-Video [22] further re-
fined this separation using distinct branches for appearance
and motion learning. Motion Inversion [30] introduced a
novel approach by learning motion embeddings through

temporal attention layers trained directly on the original
video.

Video Motion Customization (VMC) [10] introduced
a novel approach combining fine-tuning with inversion
through adaptive temporal layer adjustments, achieving su-
perior motion transfer results while maintaining temporal
consistency. TokenFlow [4], ReRender-A-Video [32], and
RAVE [11] explored various approaches to temporal consis-
tency. The field has further advanced with MotionInversion
(MI) [30] that enable precise control over temporal dynam-
ics while maintaining visual quality through sophisticated
motion embeddings trained from a reference video.

A persistent challenge in motion transfer is the as-
sumption of feature similarity between reference and target
videos. DMT [34] addresses this limitation through a novel
space-time feature loss, leveraging internal UNet activa-
tions for improved motion fidelity. This approach achieves
superior results in maintaining temporal consistency while
allowing for more diverse edited outputs compared to tradi-
tional feature-matching methods.

3. Background
Diffusion Process. Consider a video sequence as a high-
dimensional random variable z ∈ Z following an unknown
data distribution p(z). The diffusion process gradually
transforms this distribution to a known prior distribution
through a forward process defined by the following stochas-
tic differential equation:

dz = [f(z, t)− g(t)2

2
∇z log pt(z)]dt+ g(t)dw̄t (1)

where the drift coefficient f(z, t) is characterized by:

f(z, t) = −σ̇(t)σ(t)∇zt log pt(z)dt (2)

and the diffusion coefficient g(t) takes the form:

g(t) = σ(t)
√

2β(t) (3)

The stochastic process is driven by the standard Wiener pro-
cess dw̄t, while pt(zt) represents the probability distribu-
tion of the noisy samples at time t. The boundary con-
ditions of this distribution are given by the data distribu-
tion at the initial time, p0(z0) = pdata(z), and a normal
distribution with specified variance at the terminal time,
p1(z1) = N (0, σ2

maxI). The time-reversed stochastic pro-
cess for variance-preserving (VP) conditional diffusion is
formulated in [27] as:

dz = −1

2
βtzdt− βt∇z log pt(z|y)dt+

√
βtw̄t (4)

By indicating directions of increased probability, the score
naturally serves as a mechanism to undo the forward
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Figure 3. Method Overview. Framework of our Mixture of Score Guidance (MSG) for zero-shot motion transfer in diffusion models.
Left: Reference motion extraction stage captures motion characteristics M(z) from early-timestep conditional scores ∇z log p(z

(1)|y(1))
and ∇z log p(z

(2)|y(2)). Middle: Motion transfer combines content and motion scores through our MSG formulation sMSG(zt, z
∗
t ) =

∇z log pt(z|y) +wMSG(∇z log pt(z
∗|y∗)−∇z log pt(z)). Right: MSG path redirection mechanism showing attention-guided dynamics

that enable stable motion transfer by exploring the correct motion manifold while preserving content through modified Langevin dynamics
governed by our mixture of potential energies UMSG(zt) = Ucontent(zt) + wMSG[Umotion(zt, z

∗
t )− Uprior(zt)].

diffusion process.

Classifier Free Guidance. Classifier-Free Guidance (CFG)
[6] enhances generation quality by interpolating between
conditional and unconditional score predictions, effectively
balancing fidelity and diversity in the output. CFG intro-
duces a guided score ∇z log pt,λ(z|y) that replaces the con-
ditional score ∇z log pt(z|y) in (4), defined at each timestep
as:

∇z log pt,λ(z|y) = (1− λ)∇z log pt(z) + λ∇z log pt(z|y)
(5)

where λ = 1 reduces to the standard conditional generation,
while λ > 1 amplifies the influence of the conditioning
signal, typically leading to higher-quality but potentially
less diverse outputs.

Langevin Dynamics. As a fundamental stochastic pro-
cess in statistical physics, Langevin dynamics (LD) [18, 25]
enables sampling from complex probability distributions
through continuous-time evolution. The dynamics follow a
stochastic differential equation that combines deterministic
drift with random fluctuations [23]:

dz =
ϵ

2
∇ log p(z)dt+

√
ϵdw̄t (6)

When implemented with appropriate step sizes, this pro-
cess naturally evolves toward its equilibrium state p(z) [24],
making it particularly valuable for sampling tasks. The
method’s practical implementation hinges on the availabil-
ity of the score function ∇ log p(z), which, similar to diffu-
sion models, can be estimated through neural networks.

4. Methodology
This section presents the theoretical foundations and for-
mulations of Mixture of Score Guidance (MSG), a novel

approach for motion transfer in diffusion models in terms
of statistical mechanics and stochastic processes.

4.1. Score-Based Motion Transfer

4.1.1 Score Function Decomposition

Let M : Z → M be a mapping from the latent space to mo-
tion characteristics. The score function ∇z log pt(z|y) can
be separated into motion and content components through
our conditional reformulation ∇z log pt(z,M(z∗)|y):

∇z log pt(z,M(z∗)|y) = ∇z log pt(M(z∗)|y)
+∇z log pt(z|M(z∗), y)

where M(z∗) is a reference motion representation and it
is a function of the reference video latent z∗. This decom-
position separates the score function into two meaningful
components:
(1) Motion Score: ∇z log pt(M(z∗)|y) which is responsi-
ble for capturing how the latent affects motion characteris-
tics and representing the gradient of log-likelihood concern-
ing motion. The term dominates in early timesteps due to
motion’s hierarchical nature.
(2) Content Score: ∇z log pt(z|M(z∗), y) which captures
content-specific information conditioned on motion and
represents the residual gradient after accounting for motion.
As a result it is more prominent in later timesteps.

4.1.2 Mixture of Score Guidance

Given a reference video with desired motion characteristics
characterized by the reference condition y∗ with the latents
z∗, we formulate MSG as:

sMSG(zt, z
∗
t ) = ∇z log pt(z|y)

+ wMSG(∇z log pt(z
∗|y∗)−∇z log pt(z))
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This formulation can be interpreted as a statistical mix-
ture model in score space, where each component con-
tributes to different aspects of the generation process. The
theoretical significance of MSG can be understood through
its relationship with Langevin dynamics. Consider the stan-
dard Langevin equation:

dzt = ∇zU(zt)dt+
√
2β−1dWt (7)

where U(zt) is the potential energy function and β is the
inverse temperature. Our MSG formulation extends this to
a mixture of potential energies:

UMSG(zt) = Ucontent(zt)+wMSG[Umotion(zt, z
∗
t )−Uprior(zt)]

(8)
This leads to the modified Langevin dynamics:

dzt = ∇zUMSG(zt)dt+
√

2β−1dWt (9)

Since the proposed operation does not harm the original dy-
namics of the denoising process, the system explores the
correct motion manifold while preserving content and the
resulting trajectories are stable and free from spurious arti-
facts.

4.1.3 Motion Trajectory Representation

Let V ∈ RF×H×W×3 denote an input video sequence.
Our aim is to derive a training-free motion representation
through the following formulation. The forward process
transforms the initial frame latents of the reference z∗0 into
noised latents z∗t at timestep t according to:

z∗t = αtz
∗
0 + σtϵ, ϵ ∼ N (0, I) (10)

where αt and σt are time-dependent coefficients control-
ling the noise schedule [7]. The noising step is controlled
by the strength parameter. The conditional score function
∇z log pt(z

∗|y) is then computed via a pretrained denoising
network. Through investigation of score distribution, we es-
tablish that the motion representation operator M : Z → Z
defined as M(z) = ∇zt log pt(z|y) captures predominant
motion patterns at early diffusion timesteps t ≪ T . This
finding is empirically validated through our analysis of ref-
erence video conditional noise patterns, as illustrated in Fig-
ure 2 and Figure 3.

5. Experiments
Experimental Setup. Our implementation utilizes the
CogVideoX [33] model for video generation and editing.
We conduct all experiments at a resolution of 720 x 480
pixels using 50 diffusion timesteps. Due to the absence
of a dedicated DDIM inversion schedule in CogVideoX,
we employ a stochastic inversion approach where we add

controlled noise to the input video latents, regulated by a
strength parameter (detailed analysis in Fig. 8). For mo-
tion transfer, our pipeline operates in two phases: first,
we obtain conditional score estimates from the reference
video in early timesteps (t ≪ T ), then we apply this guid-
ance during the generation of motion-transferred videos at
the same timestep range. Throughout all experiments pre-
sented in this paper, we consistently set t to 10% of the total
timesteps, as this configuration provides an effective bal-
ance between motion preservation and generation quality.

6. Qualitative Experiments

Our experimental results demonstrate MotionShop’s versa-
tility across diverse motion transfer scenarios. As shown
in Figures 1 and 4, our method successfully handles both
single and multi-object transfers. For single-object scenar-
ios, MotionShop effectively transforms a black swan into a
horse and a man riding jet ski (Fig. 4.c), maintaining real-
istic movement patterns and contextual elements like water
splashes. In multi-object cases, our method seamlessly con-
verts cats into birds (Fig. 4.b) and robots (Fig. 4.f). Mo-
tionShop provides flexible background control—enabling
both dramatic alterations (Fig. 4.a) and preservation ac-
cording to the text prompt (Fig. 4.c). Our method also
supports concurrent motion controls, demonstrated by si-
multaneously transforming a frisbee into a coin while con-
verting a dog into an eagle (Fig. 4.d). Additionally, Motion-
Shop handles complex camera movements including zoom-
ins, zoom-outs (Fig. 1), and rotational movements (Fig. 7),
showcasing its comprehensive motion transfer capabilities.

7. Qualitative Comparisons

We conducted a qualitative comparison of MotionShop
against MotionInversion [30], DMT [34], VMC [10], and
MotionDirector [40], as shown in Table 5. Our evaluation
focused on motion transfer across single/multiple objects
and complex camera movements. Our experimental results
reveal key differences in background handling among the
methods: MotionDirector and VMC show limitations in
background preservation, introducing undesirable artifacts
(Table 5). In contrast, MotionShop demonstrates two dis-
tinct advantages: it enables accurate background modifi-
cation when explicitly requested in the prompt (Table 5),
and maintains consistent preservation of the original scene
composition while properly transforming target objects (Ta-
ble 5). These results indicate MotionShop’s superior ability
to distinguish between intentional and unintentional scene
modifications. Additionally, MotionShop excels in trans-
ferring complex camera movements, including zoom-ins,
zoom-outs, and rotations and their combinations such as
pan-left and zoom-out (Fig. 7 bottom right), which proved
challenging for DMT and MotionDirector in creative scene
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Multiple Object Motion Transfer

“A majestic eagle swooping to snatch a shiny gold coin”

“A medieval knight catches the magical artifact”

Input

Input

Single Object Motion Transfer

“A camel is crossing a road”

“A pirate captain striding across the deck of a ship”

“A man riding a jetski”

“A medieval knight on horseback”

Input

“Three juvenile unicorn sharing their first sip”

“Three young phoenixes at their morning ritual”“A crystal carriage drawn by an ethereal horse in a fog”

Input

“A pair of miniature medieval knights”

"A duo of adorable robots”

a b

c d

e f

“A wooden cart pulled by tiny, winged creatures”

Figure 4. Qualitative results demonstrating our method’s ability to preserve motion priors while generating novel content from text prompts.
(Left) Single-object motion transfer where complex motions like mechanical movements, horseback riding sequences are accurately pre-
served in the generated outputs. (Right) Multi-object scenarios where our method successfully maintains the original motion dynamics
while generating diverse subjects. Please refer to the Supplementary Material for full videos and additional examples.
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“A pair of miniature medieval knights”

Single Object Motion Transfer Multiple Object Motion Transfer

“A raindrop clinging to a green leaf, reflecting its 
surroundings like a tiny mirror.”

Camera Motion Transfer

M
I

Figure 5. Qualitative comparison of motion transfer capabilities. We compare MotionShop (bottom row) with existing methods
(VMC, DMT, MD, MI) on three challenging scenarios. Left: Single object motion transfer of a robot-driven motorcycle in a desert scene.
Middle: Multiple object motion transfer involving miniature medieval knights, demonstrating the ability to preserve interactions between
objects. Right: Camera motion transfer capturing the dynamic perspective of a raindrop on a leaf. Our method demonstrates superior
motion-text alignment across all three motion transfer categories.

Method Quantitative Metrics User Study

Text Sim.↑ Motion Fid.↑ Temp. Cons.↑ FID↓ Text Sim.↑ Motion Fid.↑ Temp. Cons.↑

DMT [34] 0.298 0.884 0.911 196.54 0.21 0.19 0.20
VMC [10] 0.328 0.380 0.924 237.15 0.06 0.06 0.15
MD [40] 0.285 0.828 0.904 222.92 0.13 0.14 0.10
MI [30] 0.304 0.735 0.735 210.90 0.19 0.18 0.17

Ours 0.314 0.913 0.928 209.06 0.41 0.43 0.38

Table 1. Comprehensive Analysis of Motion Generation Methods. We evaluate our approach against state-of-the-art methods using
both quantitative metrics (Text Similarity, Motion Fidelity, Temporal Consistency, and FID) and human evaluation. Our method achieves
superior performance in most metrics, particularly showing significant improvements in user studies. Arrows (↑/↓) indicate higher/lower
values are better, and best results are shown in bold.

camera motion transfer (Fig. 6).

8. Quantitative Experiments
In our quantitative evaluation, we compared MotionShop
with MotionInversion [30], DMT [34], VMC [10], and Mo-
tionDirector [40] with 100 data-prompt pairs using four
metrics: (1) Text Similarity, measuring frame-to-text align-
ment using CLIP [21], (2) Motion Fidelity [34], evaluat-
ing motion preservation using tracklet similarity between
input and output videos, (3) Temporal Consistency, measur-
ing frame-to-frame coherence via CLIP feature similarity,

and (4) FID, assessing visual quality against DAVIS dataset.
As shown in Table 1, MotionShop achieves state-of-the-art
performance in both Motion Fidelity (0.913) and Temporal
Consistency (0.928). While VMC shows marginally higher
Text Similarity (0.328 vs. 0.314), our method achieves a
better balance between text alignment and motion quality
metrics (Table 1).

9. Discussion on Quantitative Experiments
The quantitative evaluation results presented in Table 1
demonstrate the superior performance of our approach.
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Figure 6. Trade-off Analysis between Text Similarity and Mo-
tion Fidelity. Comparison of our method against baselines shows
superior performance in both metrics, with our approach (green
star) achieving higher motion fidelity (0.913) while maintaining
competitive text similarity (0.314).

Specifically, MotionShop achieves state-of-the-art perfor-
mance in Motion Fidelity, surpassing the previous best
method (DMT [34]) by a significant margin of 2.9%. In
terms of Text Similarity metrics, our quantitative analysis
reveals an interesting trade-off between text alignment and
motion preservation. While VMC [10] achieves marginally
higher Text Similarity scores (surpassing MotionShop by
1.4%), our experimental results indicate that this advantage
comes at a significant cost to motion fidelity. In contrast,
MotionShop maintains competitive text alignment capabili-
ties (second-best among all methods) while simultaneously
achieving superior motion preservation, demonstrating a
more balanced approach to the inherent text-motion trade-
off in video generation tasks. Analysis of the Fréchet In-
ception Distance (FID) reveals that our method achieves
competitive performance, ranking second with a margin of
12.52 compared to DMT [34]. However, deeper examina-
tion of both Text-Similarity metrics and broader quantita-
tive results provides critical context for these FID scores.
While DMT exhibits lower FID values, this advantage ap-
pears to stem from its conservative approach to scene mod-
ification, predominantly preserving original scene layouts
and compositions rather than implementing creative trans-
formations as specified in the prompts. This characteristic
leads to numerically favorable FID scores but potentially
limits the method’s utility for more ambitious motion trans-
fer applications requiring significant scene modifications.
Our approach, in contrast, demonstrates a more balanced

capability, successfully executing substantial scene trans-
formations while maintaining reasonable FID scores, thus
offering greater practical utility for diverse motion transfer
scenarios.
User Study. We conducted a user study with N = 50 par-
ticipants on Prolific.com, evaluating 30 sets of videos. Par-
ticipants assessed three metrics by selecting the top two re-
sults for each: Motion Preservation, Temporal Consistency,
and Text Alignment. Results in Table 1 demonstrate Mo-
tionShop’s consistent superiority across all metrics, outper-
forming existing approaches in motion preservation, tempo-
ral coherence, and text-guided modifications (see Appendix
for more details).

9.1. Ablation Studies

We analyze three key components: motion extraction
strength, guidance timestep ratio, and guidance mecha-
nisms. Fig. 8 (left) shows the impact of motion extrac-
tion strength parameters. At 0.6, the horse’s jumping mo-
tion is insufficiently transferred; at 0.8, over-stylization dis-
torts the motion; 0.7 achieves optimal balance between mo-
tion preservation and visual quality. Fig. 8 (right) demon-
strates that applying Mixture of Score guidance at different
timesteps preserves generative priors, enabling diverse yet
natural jumping motions.

Fig. 9 compares three guidance approaches: Classifier-
Free Guidance (CFG), Unconditional Score Guidance
(USG), and our Mixture of Score Guidance (MSG). CFG
struggles with motion consistency, while USG better pre-
serves motion but lacks prompt-guided precision. MSG
demonstrates superior performance, evidenced by natural
medieval cat motions (left) and wolf-to-pig transformations
(right) while maintaining motion characteristics. This im-
provement stems from our novel formulation that explicitly
decomposes motion and content scores, allowing for more
precise control over the transfer process.

10. MotionBench Dataset
We introduce MotionBench, a comprehensive motion trans-
fer dataset designed for systematic evaluation of motion
transfer capabilities. The dataset comprises 200 carefully
curated source videos and 1,000 corresponding transferred
sequences, combining real-world footage from DAVIS
dataset (50 videos) and high-quality synthetic videos (150
videos) generated using CogVideoX [33].

The dataset is structured around three primary motion
categories, each addressing distinct challenges in motion
transfer: Single Object Motion (85 videos, 42.5%), Multi-
ple Object Motion (65 videos, 32.5%), and Camera Motion
(50 videos, 25%). Single object sequences capture diverse
motion patterns from rigid mechanical movements to com-
plex articulated motions. Multiple object scenarios evalu-
ate preservation of spatial relationships and interaction dy-
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Camera Trajectory Input

“A steampunk clockwork butterfly”

Input

“A golden snitch diving through Quidditch stadium”

Camera Trajectory

Camera Trajectory Input

“A medieval knight in gleaming armor”

Camera Trajectory

“Handwritten letter on a pages”

Input

Figure 7. Camera Motion Transfer Results Across Diverse Scenarios. Each row shows the camera trajectory (left) and corresponding
input-output image sequences. Our method can transfer camera motions while maintaining spatial consistency, as demonstrated in various
cases: a steampunk clockwork butterfly animation, a raindrop on a leaf, an eagle soaring through mountain peaks, and dominos falling on
a rail track. The colored trajectories represent the camera path through 3D space, with different colors indicating temporal progression.

Input Strength: 0.6 Strength: 0.7 Strength: 0.8 Input Timestep: 0.05 Timestep: 0.10 Timestep: 0.25

“A horse is jumping into river” “A skier smoothly navigating down a snowy mountain trail”

Figure 8. Ablation study on strength and timestep parameters. Left: We analyze the effect of noise addition in the motion extraction
stage, where strength=0.7 achieves optimal motion representation - lower values (0.6) result in weak motion transfer while higher values
(0.8) lead to over-stylization. Right: Impact of applying Mixture of Score guidance at different timestep ratios of total 50 timesteps on
motion transfer quality.

namics between moving entities. Camera motion sequences
test the handling of viewpoint changes through both simple
camera operations (pan, tilt, zoom) and complex trajectories
combining multiple movement types.

Each source video is paired with multiple target motion

transfers, systematically exploring scenarios from straight-
forward object-to-object transformations to comprehensive
scene-level modifications. The transfers evaluate both mo-
tion fidelity and creative adaptation capabilities, ranging
from preserving precise mechanical movements to trans-
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Figure 9. Comparison of different guidance mechanisms. Comparing our Mixture of Score Guidance (MSG) against Classifier-Free
Guidance (CFG, baseline without reference) and Unconditional Score Guidance (USG, using reference video’s unconditional score).

ferring organic motion patterns onto radically different tar-
gets. For example, the dataset includes challenging cases
like transferring vehicle motion to flying creatures while
preserving trajectory dynamics. All videos maintain consis-
tent technical specifications (720×480 resolution) to enable
standardized evaluation. We provide dataset statistics, cat-
egory descriptions, and comprehensive analysis of motion
transfer scenarios in the supplementary material.

11. Limitation and Societal Impact.
Our method’s performance is inherently tied to the gener-
ative priors learned by the underlying T2V model. As a
result, certain target concepts and motions may fall outside
the model’s distribution. Additionally, any biases present
in the T2V model are carried over into our approach, a
drawback that any zero-shot method suffers, which may
influence the quality of generated outputs for specific
scenarios. Since our method enables controllable video
generation, there is a potential risk of it being used to
create deepfake videos that spread misinformation or
deceive viewers. To mitigate these risks, we emphasize the
importance of ethical use of our tool.

12. Conclusion
In this paper, we presented MotionShop, the first motion
transfer approach in video diffusion transformers, which re-
formulates conditional score to decompose motion and con-
tent scores. By treating motion transfer as a mixture of po-
tential energies, our method enables creative scene trans-
formations while preserving motion patterns, operating di-
rectly on pre-trained models without additional training.
Extensive experiments demonstrate MSG’s effectiveness
across various scenarios, from single/multiple object trans-
formations to complex camera motion transfer. Our frame-

work provides principled guidance for balancing motion
and content preservation, enabling flexible motion transfer
in video generation.
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MotionShop: Zero-Shot Motion Transfer in Video Diffusion Models with
Mixture of Score Guidance

Supplementary Material

A. User Study Details
To evaluate the perceptual quality of our method, we con-
ducted a comprehensive user study with N=50 participants
recruited through Prolific.com. Following standard prac-
tices in human evaluation studies for video generation [30],
we designed our study to assess three critical aspects of mo-
tion transfer quality, as illustrated in Fig. 10.

For each test case, participants were presented with an
input video and five different edited versions, corresponding
to various motion transfer methods. The evaluation criteria
were as follows:
1. Motion Fidelity: Participants were asked to identify the

two edited videos that best preserved the motion patterns
from the input sequence. This assessment focused on the
accuracy of transferred motion dynamics and spatial re-
lationships. The question we asked is being ”Regarding
the input video, which specific edits would you consider
to be among the top two most successful regarding pre-
serving original motion?”

2. Temporal Consistency: Users selected the two results
exhibiting the highest temporal coherence, evaluating
frame-to-frame continuity and the absence of artifacts or
jitter in the generated sequences. The question we asked
is being ”Regarding the modified videos below, select the
top 2 that have the smoothest motion.”

3. Text-Motion Alignment: Participants evaluated how
well each generated video aligned with its correspond-
ing text prompt, focusing on both semantic accuracy and
motion appropriateness. The question we asked is be-
ing ”Which video best aligns with textual description
(prompt) below.”
The study compared five different approaches: our

proposed MotionShop method, Space-Time Features
(DMT) [34], MotionDirector (MD) [40], MotionInversion
(MI) [30], and Video Motion Customization (VMC) [10].
The user study interface, shown in Fig. 11, was designed to
facilitate clear comparison and intuitive interaction.

B. MotionBench: A Comprehensive Motion
Transfer Dataset

We introduce MotionBench, the first publicly available
dataset specifically designed for evaluating motion trans-
fer capabilities in video generation models. While exist-
ing video datasets primarily focus on general video synthe-
sis or editing tasks, MotionBench addresses the critical gap
in standardized evaluation of motion transfer capabilities.

The dataset comprises 200 carefully curated source videos
and 1,000 corresponding motion-transferred sequences, en-
abling systematic evaluation across diverse motion patterns
and scene compositions.

B.1. Dataset Composition

B.1.1 Source Videos

The 200 source videos are curated from two primary
sources:
• DAVIS Dataset (50 videos): Selected for their diverse

real-world motions
• Synthetic Videos (150 videos): Generated using

CogVideoX-5B [33] model.
The source videos are categorized into the following motion
categories:
1. Single Object Motion (85 videos)

The Single Object Motion category constitutes the
largest portion of our dataset (42.5% of source videos),
carefully curated to capture the full spectrum of motion pat-
terns observed in real-world scenarios. This category is sub-
divided into three distinct motion types:
Rigid Object Motion (35 videos): This subcategory fo-
cuses on objects that maintain their shape during mo-
tion, featuring vehicles (e.g., cars, motorcycles), toys (e.g.,
remote-controlled cars, mechanical toys), and mechanical
objects (e.g., robotic arms, industrial machinery). These se-
quences are particularly valuable for evaluating a method’s
ability to preserve consistent object geometry while trans-
ferring motion patterns.
Non-rigid Object Motion (30 videos): This subset encom-
passes objects that undergo deformation during movement,
primarily featuring animals (e.g., birds in flight, running
quadrupeds) and deformable objects (e.g., cloth, fluid-like
materials). These sequences present more complex chal-
lenges, requiring methods to handle both global motion
and local deformations simultaneously. The videos capture
various natural movements including galloping, flying, and
elastic deformations.
Human Motion (20 videos): The human motion sequences
capture a diverse range of articulated movements, including
walking sequences, dance performances, and various sports
activities. These videos are particularly challenging as they
combine both rigid (skeletal) and non-rigid (soft tissue) mo-
tion patterns. The sequences test a method’s capability to
preserve complex kinematic chains and natural human dy-
namics while transferring motion to different target subjects
or characters.
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Figure 10. Type of Questions. We ask 3 different questions for Text Alignment, Motion Fidelity and Temporal Consistency.

Table 2. Distribution of videos across different motion categories
in MotionBench. The dataset provides a balanced representation
of various motion types, enabling comprehensive evaluation of
motion transfer methods.

Motion Type Source Videos Transfer Sequences

Single Object 85 (42.5%) 400 (40%)
Multi-Object 65 (32.5%) 300 (30%)
Camera Motion 50 (25%) 300 (30%)

Each subcategory is carefully balanced to include both
simple and complex motion patterns, varying speeds, and
different environmental contexts. This structured approach
enables systematic evaluation of motion transfer methods
across a spectrum of complexity levels, from basic rigid
transformations to highly articulated and deformable mo-
tion patterns.
2. Multi-Object Motion (65 videos)

The Multi-Object Motion category comprises 32.5% of
our dataset, specifically designed to evaluate motion trans-
fer capabilities in scenarios involving multiple moving enti-
ties. This category presents unique challenges in preserving
spatial relationships, temporal synchronization, and com-
plex interaction patterns. We organize these sequences into
three distinct subcategories:
Interactive Motion (25 videos): These sequences capture
complex interactions between multiple objects or animals,
such as predator-prey chase sequences, children playing
with toys, or animals engaged in social behaviors. The
defining characteristic of this subset is the causal relation-
ship between the subjects’ movements, where the motion
of one entity directly influences others. These videos are
particularly challenging for motion transfer as they require
preserving not only individual motion patterns but also the
intricate timing and spatial relationships that define the in-
teractions. Examples include dogs playing with frisbees,
cats interacting with toys, and people passing objects be-
tween them.

Independent Motion (20 videos): This subcategory fea-
tures scenarios where multiple objects move simultaneously
but independently of each other. These sequences test a
method’s ability to maintain distinct motion patterns while
ensuring global scene coherence. Examples include traffic
scenes with multiple vehicles, scenes of birds flying in dif-
ferent directions, and sequences of independent mechanical
systems operating simultaneously. The primary challenge
lies in preserving the independence of various motion pat-
terns while maintaining their temporal alignment and avoid-
ing unintended interactions in the transferred results.
Group Motion (20 videos): The group motion sequences
focus on coordinated movements of multiple subjects, such
as synchronized dancing, flock behaviors, or team sports
activities. These videos present unique challenges in main-
taining both individual motion fidelity and group-level pat-
terns. The sequences capture various forms of collective
behavior, from highly structured (e.g., marching bands, syn-
chronized swimming) to more organic patterns (e.g., school
of fish, crowd movements). The key evaluation aspect is
the preservation of both individual dynamics and emergent
group behavior patterns during motion transfer.

Each subcategory is carefully curated to include varying
levels of complexity in terms of the number of objects, spa-
tial distribution, and temporal coordination. This structured
organization enables comprehensive evaluation of how mo-
tion transfer methods handle scenarios ranging from simple
multi-object scenes to complex, interdependent motion pat-
terns, providing insights into their scalability and robustness
in real-world applications.
3. Camera Motion (50 videos)

The Camera Motion category constitutes 25% of our
dataset, specifically designed to evaluate motion transfer
methods’ capabilities in handling various camera movement
patterns. This category is particularly crucial as camera
motion adds an additional layer of complexity to the mo-
tion transfer task, requiring methods to maintain coherent
scene composition while adapting to changing viewpoints
and perspectives.
Simple Camera Movements (20 videos): This subcate-
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gory encompasses fundamental camera operations that form
the building blocks of cinematographic techniques. Each
type presents unique challenges for motion transfer:
• Pan (5 videos): Horizontal camera rotations that test a

method’s ability to maintain consistent object appearance
and motion during lateral viewpoint changes. These se-
quences include landscape shots, architectural surveys,
and subject tracking, with varying pan speeds and ranges.

• Tilt (5 videos): Vertical camera rotations that chal-
lenge perspective preservation, particularly in maintain-
ing proper scale relationships as the viewing angle
changes. Examples include vertical scans of buildings,
waterfalls, and ascending/descending subject movements.

• Zoom (5 videos): Sequences involving camera focal
length changes, testing a method’s capability to handle
continuous scale variations while preserving motion co-
herence. These include both zoom-in sequences revealing
fine details and zoom-out shots revealing broader context.

• Dolly (5 videos): Forward/backward camera translations
that evaluate depth handling and parallax effects. These
shots are particularly challenging as they require main-
taining proper spatial relationships between foreground
and background elements during motion transfer.

Complex Camera Movements (30 videos): This subcat-
egory features more sophisticated camera work that com-
bines multiple basic movements, presenting higher-level
challenges for motion transfer systems:
• Combined Motion Patterns (15 videos): These se-

quences feature simultaneous execution of multiple cam-
era movements (e.g., pan-with-zoom, tilt-with-dolly).
They test a method’s ability to handle compound camera
transformations while maintaining scene coherence and
motion fidelity. Examples include aerial shots with mul-
tiple degrees of freedom, elaborate reveal sequences, and
complex establishing shots.

• Dynamic Tracking Shots (15 videos): These sequences
involve camera movements that actively follow moving
subjects, requiring simultaneous handling of both cam-
era and subject motion patterns. They present particularly
challenging scenarios where the camera movement must
maintain a specific spatial relationship with the tracked
subject while adapting to the subject’s motion. Examples
include sports coverage, chase sequences, and nature doc-
umentaries.
The camera motion sequences are carefully selected

to include variations in speed, acceleration, and motion
smoothness. Additionally, they encompass different envi-
ronmental contexts (indoor/outdoor, varying lighting con-
ditions) and subject types, providing a comprehensive eval-
uation framework for testing motion transfer methods’ ro-
bustness to camera movement. This category is particularly
valuable for assessing a method’s potential in real-world ap-
plications such as cinematography, virtual production, and

automated video editing.

B.2. Motion Transfer Sequences

Our dataset includes 1,000 carefully curated motion-
transferred sequences, each derived from the source videos
through various transformation scenarios. These sequences
are specifically designed to evaluate different aspects of
motion transfer capabilities, ranging from object transfor-
mations to comprehensive scene alterations. The transfers
are organized into two primary categories, each address-
ing distinct challenges in motion transfer tasks: 1. Cross-
Category Transfers

This category evaluates a method’s capability to trans-
fer motion patterns across different object categories while
maintaining motion fidelity. The sequences are divided into
three distinct transfer types:
Object-to-Object: These transfers focus on motion preser-
vation across different object categories while handling sig-
nificant shape and appearance variations. Examples in-
clude:
• Vehicle-to-creature transformations (e.g., car motion ap-

plied to a mechanical horse)
• Mechanical-to-organic conversions (e.g., robot move-

ments mapped to flowing water)
• Rigid-to-deformable translations (e.g., toy motion

adapted to cloth-like objects)
These sequences test the ability to maintain motion char-
acteristics despite fundamental changes in object properties
and physical constraints.
Human-to-Character: This subset specifically addresses
the challenging task of transferring human motion to non-
human characters while preserving natural movement pat-
terns. Examples include:
• Human dance movements applied to animated characters
• Sports motions transferred to fantasy creatures
• Gesture sequences mapped to mechanical entities
These transfers test the preservation of complex articulated
motion while adapting to different skeletal structures and
movement constraints.
Animal-to-Object: These sequences evaluate the transfer
of organic motion patterns to inorganic objects, presenting
unique challenges in motion adaptation. Examples include:
• Bird flight patterns applied to flying vehicles
• Quadruped locomotion mapped to mechanical assemblies
2. Scene Transformation Transfers

This category focuses on evaluating motion preserva-
tion within dramatically altered environmental contexts, ad-
dressing two key aspects:
Environment Changes: These transfers test the ability to
maintain motion fidelity while completely transforming the
surrounding environment. The sequences include:
• Context shifts (e.g., street scene to underwater environ-

ment)
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Figure 11. User Study Interface. Given a reference video we ask
for 3 different type of questions with 5 different options including
DMT, MI, MD, VMC and MotionShop results.

• Scale transformations (e.g., human-scale to miniature
worlds)

• Physical domain changes (e.g., terrestrial to aerial scenar-
ios)

These sequences evaluate how well methods handle motion
transfer when environmental physics and constraints change
significantly.
Style Transfers: This subset focuses on artistic and stylistic
transformations while maintaining motion integrity. Exam-
ples include:
• Realistic to animated style conversions
• Contemporary to historical aesthetic adaptations
• Natural to fantastical scene transformations

Each transfer category is carefully designed to test spe-
cific aspects of motion transfer capabilities, from basic mo-
tion preservation to complex scene-level transformations.
The sequences vary in complexity, duration, and trans-
formation extent, providing a comprehensive evaluation
framework for assessing motion transfer methods across
different scenarios and applications. This structured ap-
proach enables systematic analysis of a method’s strengths
and limitations in handling various types of motion transfer
challenges.

B.3. Dataset Statistics

Key characteristics of the dataset:
• Resolution: 720×480 pixels
• Frame Rate: 15 FPS
• Duration: 1-7 seconds per video (Due to the frame pro-

cessing limitation of CogVideoX)
• Total Frames: ∼45,000
• Format: MP4 (H.264 codec)

Here we note that the duration limit stems from the
CogVideoX [33] backbone. It can only process 49 frames
at most.

B.4. Discussion

MotionBench addresses several critical requirements essen-
tial for comprehensive motion transfer evaluation. First,
it achieves comprehensiveness by encompassing a diverse
range of motion types and scene compositions, ensuring
broad coverage of real-world scenarios. Its scalable de-
sign provides sufficient data for meaningful model training
and evaluation, while maintaining standardized evaluation
protocols and metrics that enable consistent comparisons
across different approaches. Furthermore, the dataset’s in-
clusion of both synthetic and real-world scenarios ensures
practical applicability across various use cases. Through
these carefully considered design choices, MotionBench
enables researchers to systematically compare motion trans-
fer methods, analyze motion preservation capabilities, eval-
uate scene composition handling, and assess temporal con-
sistency.
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